

EDS ECHO SUMMIT SERIES

PRESENTATION

Role of physical and occupational therapies in EDS and HSD

SPEAKER

Lies ROMBAUT, PhD PT MSc

Center for Medical Genetics, Ghent University Hospital, Belgium

Nothing to disclose

What is known about physiotherapy for EDS and HSD?

- Physiotherapy is generally accepted as an efficient treatment for musculoskeletal complications of HSD and EDS (Keer et al 2011)
- 63,4% of hEDS patients in physiotherapy reported a positive outcome (Rombaut et al 2011)
- There is **some evidence** that HSD/hEDS can improve with exercise, but there is no convincing evidence for specific **types of exercises** (Palmer et al. 2014, Smith et al. 2013)
- Hypermobile patients can strengthen, but they start at a lower level (Alexander et al. 2019)

Woman, 35 years Diagnosis: Ehlers-Danlos syndrome

- Generalized joint hypermobility
- Delayed gross motor development (walking > age 2 yrs)
- Low impact fractures at thumb and spine (T9 and T11) Recurrent subluxations, sev
- Recurrent tendinopathies (trohanter major)
- Recurrent bursitis at the shoulder
- Chronic widespread pain
- Easy bruising
- Velvety skin
- Hyperextensible skin
- Mild scoliosis
- Pedes plani

Pain location, pain sensitivity, pain actuality

- Widespread mss pain, dominant at neck, shoulders, hips and fingers
- Pain on a daily basis (VAS 5 à 7/10)
- Analgesics on a daily basis
 (Gambaran + Zaldiar -> Tradonal Odis + Dafalgan)
- Nociceptive pain + sensitisation

Laxity/ instability

- Generalized joint hypermobility
- Recurrent subluxations of shoulder, elbows, rib, thumbs, hips and hallux
- Ankle distorsions
- Cervical joint instability (confirmed by fMRI)

The concept of joint stability

The concept of joint stability

Consequences of hyperlaxity

Physiological movement – ROM↑ Hypermobility non-physiological movements

Consequences of hyperlaxity

Physiological movement – ROM↑ Hypermobility

Angular ROM, translatory movements (joint play), joint laxity tests

- Beighton score: 7/9
- Thumbs: CMC I +++, MPC I ++, IP I ++, no end range resistance
- Wrists: ROM ↑, translations +
- Elbows: translations +
- Shoulders: apprehension relocation test left +, ROM ext – int rotation >180° +
- Hips: SLR > 70°, snapping hip (external)
- Knees: no extreme hyperextension, patellar laxity +/-
- Toes: ROM 个, no end range resistance

The concept of joint stability

Hypermobility/laxity: loose ligaments The concept of joint stability

- The deep muscles lie close to the joint and ligaments.
- When they contract, they pull the head of the joint tightly into the socket. (force closure)
- Thus, these deep muscles "help" the ligaments to hold together and stabilize the joint.

'Mobilizers' Superficial muscles Movement **Overloaded** and tense

The concept of joint stability

The concept of joint stability

Neuromuscular control

- Concerted action of sensory input (proprioception) and motor output
- Continuous monitoring of the position of the joint and adjusting of muscle forces surrounding joints
- → Restore or remain proper joint alignment

To detect typical movement errors related to hypermobility & instability -> overload injuries

- Walking
- Lunges
- Squats
- Unilateral stance en UL squat
- Elevation in scapular plane
- Flexion, extension and rotation Cx
- Flexion from standing position

- Medial deviation knee
- Bad knee control (sway)
- Hip sagging contralateral
- Compensation LFL Lx

 → Indication to strengthen the hip abductors & external rotators, MM. Glutei, and to exercise core stability and motor control

The concept of joint stability

The concept of joint stability

Symptoms and complaints related to hypermobility

Muscles

- Muscle tension (typically at neck, low back, ...)
- Triggerpoints with reffered pain

Bursa

 Irritation of bursa due to excessive friction

Joints

- Joint blockages
- Subluxations, luxations
- Ligament injuries
- Irritation of the joint capsule

Tendons

Overuse injuries (Typically at hips, shoulders, knee tendon, fascitis plantaris, ...)

Nerves

- Irritation of the nerve sheath with reffered pain
- Less frequent: real nerve damage

Gross motor development

- Delayed gross motor skills
- Clumsiness

Need for physiotherapy!

How should the physiotherapy sessions look like?

Consequences of general tissue fragility for physiotherapy

- Many manual therapy techniques and exercises can be selected for patients with EDS/HSD
- **BUT** should be individually adapted according to the patient's load capacity
 - Degree of hyperlaxity/joint instability
 - Degree of general tissue fragility
 - Pain sensitivity
 - Others: neurological problems, osteoarthritis, previous surgery,...

Manual therapy

Instable joints (lux/sublux) Central sensitisation

Manual therapy: case

Instable joints (lux/sublux) Central sensitisation

+ muscular techniques: triggerpoints, gentle stretching, dry needling

Exercise therapy

1. Motor control exercises

- Stabilisation training: core stability and joint stability
- Movement control training

Exercise therapy

2. Muscle strength exercises

• M. Gluteus Medius + external rotators hip; M. Quadriceps; M. Gluteus Maximus

ER hip with theraband + bridging (hip ER, Qceps, hip ext)

Heel push-up (hip ABD)

Squat with theraband (Q-ceps, hip ABD+ ER)

3. Stretching exercises

- e.g. M. Hamstrings, Mm. hip adductors, M. Iliopsoas, M. Pectoralis minor
- Discouraged: if meant to increase an already hypermobile ROM
- Allowed: to diminish muscle tone and to maintain/restore the length of muscles
- Care: not to overstretch!
- ! + necessary to train the stabilizing muscles

Exercise therapy

4. Condition training

A reduced load capacity !

- \rightarrow Increased risk for trauma, overuse lesions and inflammation
- \rightarrow Delayed recovery from exercise
- \rightarrow Very slow progress hampered by setbacks and flare-ups

Exercise therapy: prudence and patience

- Start slow, go slow
- Vary the exercise mode (avoid too many repetitive movements)
- Spread the exercises
- Progress only when success on the current level

Which types of exercises are good and which ones not?

1. End range with external load

2. Too large range of motion

3. Open chain

4. High impacts

(e.g. jumps, plyometrics, running)

1. Mid-range control

2. Approximation:

• Close chain / semi-closed chain exercises / body support

2. Approximation:

• Abduction/external rotation or isometric external rotation

Progression:

- Limb movements over a small ROM → larger ROMs
- Closed chain → semi-closed chain → open chain (if possible)
- No disturbing elements → add 'destabilizing' elements
- Low load → high load
- Bilateral/symmetric \rightarrow unilateral/asymmetric movements

Hydrotherapy

Many benefits of exercising in water:

- no load on the joints
- no abrupt accelerations or sudden movements
- support of the extremities by buoyancy \rightarrow some OCE are feasible

Sports

Cyclic mid-range movements without high peak forces

Balance and movement control

Certain devices in the gym (CCE)

High impact sports

Sports which aggravate joint hypermobility

Certain devices in the gym (OCE)

- Pilates: often too burdensome -> individual selection
- Recommended: Tai chi, electric cycling, swimming

Example

Education: joint protection

- Educate how to look after their joints
 - Be aware of potentially harmful postures and avoid them
 - Avoid hanging/resting in "locked" position for prolonged periods
- Reduce time spent on repetitive activities
- Do not entertain friends and schoolmates with a show of hyperflexibility

Taping, splinting and bracing

- Positive effects:
 - Joint protection
 - Improve healing
 - Mechanical stability and proprioception
 - Improve alignment of joints

Tape

Joint mobility \downarrow : patella, wrist and elbow Proprioception \uparrow : scapula, shoulder, lumbar spine

Braces

- During acute, excessive pain episodes
- During healing after trauma
- During specific intensive tasks/situation
- During night (prevention subluxation)

Silverringsplints

- Brace CMC I
- SRS MCP I + IP I
- Sportbrace wrist (during night) + neutral wrist position

Writing aids

Thank you!

Lies Rombaut, PhD PT Msc

Center for Medical Genetics Ghent University Hospital Corneel Heymanslaan 10 Entrance 81 9000 Ghent Belgium

+32 9 332 36 03 info.cmgg@uzgent.be

